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• Indirect response (IDR) modeling as an effective paradigm for 
exposure-response modeling of clinical trial endpoints to guide 
clinical drug development

– Ordered categorical endpoint modeling

• Latent variable representation

– IDR modeling of endpoints in placebo-controlled clinical trials

• Model representation: link with change-from-baseline IDR model 
representation

• An equivalence between Type I and Type III IDR models: interpretation

• Modeling extra correlation between continuous and ordered 
categorical endpoints

• Application to ustekinumab data

Overview
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• Example: 20%, 50%, and 70% improvement in the American College of Rheumatology 
disease severity criteria (ACR20/50/70)

– Combine into one variable ACR: ACR20/50/70 achieved  ACR ≤ k, k= 1, 2, or 3

• Latent variable representing underlying disease condition (similar to Hutmacher et al 2008):

– Dis(t) = B0 Fp(t) Fd(t) exp( t)

– B0, baseline; 0<Fp(t)1, placebo effect; 0<Fd(t)1, drug effect

• Define RfB(t) = % reduction from baseline, and calculate:

– RfB(t) = [Dis(0) - Dis(t)]/Dis(0) = 1 - Fp(t) Fd(t) exp(-i0) exp(it)

– log[1 - RfB(t)] = log[Fp(t)] + log[Fd(t)] - i0 + it

– Define: z(t) = log[1 - RfB(t)], R(t) = log[Fp(t)] + log[Fd(t)] - i0, =it



– z(t) = R(t) + 

• Assumption: ACR20/50/70 met, if % reduction from baseline RfB(t) crosses certain thresholds

• Equivalently when z(t) = log[1 - RfB(t)] crosses certain thresholds

Ordered Categorical Endpoint Modeling: 
Latent Variable Representation
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• Let k, k = 1,2, or 3, be the thresholds, i.e. ACR ≤ k  z(t) <  k

• Using the probit link, i.e., assuming  ~ N(0,1):

– prob(ACR ≤ k) = prob(z(t) <  k) = prob[ < (k - R(t))/] = [(k - R(t))/] 

• Write

– k = k/, g(t) = -log[Fp(t)]/, fd(t) = -log[Fd(t)]/,  =-i0

• Then

– -1 [prob(ACR ≤ k)] = k + g(t) + fd(t) + 

– which is the standard form of probit regression

– Constraint: 0 ≤ g(t) < 1, but can be reparameterized such that -∞ ≤ g(t) < 0

• Using the logistic distribution for  leads to a similar logistic regression 
form, i.e., with  replaced by the logit function

Probit Regression
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• Probit regression:

– -1 [prob(ACR ≤ k)] = k + g(t) + fd(t) + 

• Placebo model: Should have prob(ACR ≤ k)] at t=0, thus g(0)=-

– Choose g(t) = log[1 – exp(-rt)]

– g(t) = 0  k represent steady-state probabilities

• Desired to use IDR model for fd(t); to interpret as drug effect, needs fd(t)=0

– fd(t) = DE[1 – R(t)]

– R(0) = 1

• fd(t) turns out to be equivalent to a reduction-from-baseline IDR model

– Proof: plug fd(t) into the differential equation 

Choosing Model Terms
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• Probit regression model takes form of

– -1[prob(ACR ≤ k)] = fk,p(t) + fd(t)

– fd(t) represents increase in beneficial effect

• Equally reasonable to model

– -1[prob(ACR > k)] = gk,p(t) + gd(t)

– gd(t) represents reduction in harm

• Algebraically, for general symmetric link functions:

– gk,p(t) = -fk,p(t),  gd(t) = -fd(t)

• If fd(t) takes form of reduction-from-baseline IDR model, then gd(t) 
takes form of corresponding increase-from-baseline IDR model

– Proof: plug gd(t) into the differential equation

Link Model Symmetry
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• As (perhaps) expectedly:

Type I/III reduction-from-baseline IDR model



Type III/I increase-from-baseline IDR model

– Proof: differential equation algebra

• (Perhaps) unexpectedly:

– No such symmetry holds for Type II/IV IDR models

• Holds regardless of categorical or continuous endpoint 
modeling

General IDR Model Symmetry
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• Clinical endpoint modeling

– Disease scores lack physiological interpretation

– Improvement can be caused by increasing benefit or reducing 
harm

– May need to try all IDR models (Hutmacher et al 2008)

• Only 3 identifiable IDR models to try instead of 4

• Compared with simple correlation methods (e.g., using AUC), 
IDR models, using only 1 more parameter (kout), allows the 
efficient use of all exposure and efficacy observations

Applying IDR Model to Clinical Endpoints
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• Bivariate normal Residual errors of (latent) endpoints X, Z:

– (X, Z) ~ N(X, X
2, Z, Z

2, )

– Conditional distribution:

• Z|X=x ~ N(Z + Z /X (x - X), (1 - 2) Z
2)

• May choose Z =1

• Implementation sketch in NONMEM:

– SIG = THETA(.)

–  = THETA(.)

– IF(continuous observation) THEN

• RES = (DVctu - PREDctu)/SIG

• LKPASI = EXP(-RES**2/2) / (sqrt(2*3.14)*SIG)

– ELSE IF(categorical observation) THEN

• PREDcond = PREDdis+ *RES

• INT1 = (ALPHA1 – PREDcond ) / sqrt(1 - 2)

• INT2 = (ALPHA2 – PREDcond ) / sqrt(1 - 2)

• …

• IF(DV.EQ. k) THEN LKACR =

– ENDIF

– Y = LKPASI * LKACR 

Model Extra Correlation between Two 
Endpoints
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Application: Study Design and Data

Study PSUMMIT I (used for initial model development) 

• TNF naïve subjects with active psoriatic arthritis 

• Week 0 – 12: PBO / 45mg / 90mg / Loading + Q12 weeks 

• Week 12 – 24: PBO crossover

• ~600 subjects, 2,000 PK records, 3,500 ACR scores, 2,300 PASI scores

Study PSUMMIT II (reserved for model validation)

• Similarly designed, except that ~50% subjects were TNF experienced

• ~300 subjects, half data records

Clinical endpoints

• ACR20/50/70: collected at Weeks 4, 8, 12, 16, 20 and 24

• PASI scores: treated as continuous, collected at Weeks 0, 12, 16 and 24 
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Overall PK/PD Model Diagram for both 
Endpoints (Type I IDR Model)
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• PK modeling: Confirmatory (Hu & Zhou 2008, Hu et al 2011)

• ACR model component development:

– Reasonable, NONMEM standard errors for drug effect model 
parameters relatively large (30-100%)

• PASI model component development:

– placebo effect was insignificant – model reduced to regular Type I 
IDR model without placebo effect

– Between-subject random effect on baseline

– Reasonable, NONMEM standard errors for IC50 near 50%

• Extra correlation term estimated as 0.173, was significant with 
NONMEM objective function drop = 13 

Model Development
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External Model Validation Visual Predictive 
Check (VPC) - ACR
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External Model Validation VPC: PASI
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IDR models provide a predictive, parsimonious 
approach for efficient exposure-response modeling 
of clinical endpoints

•Change-from-baseline representation has nice characteristics

• Allows separate placebo modeling

•Practically, there are in essence only 3 IDR models instead of 4

Modeling extra-correlation between two endpoints 
can be implemented in NONMEM

Conclusions
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