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Overview

e Indirect response (IDR) modeling as an effective paradigm for
exposure-response modeling of clinical trial endpoints to guide
clinical drug development

— Ordered categorical endpoint modeling
e Latent variable representation

— IDR modeling of endpoints in placebo-controlled clinical trials

e Model representation: link with change-from-baseline IDR model
representation
e An equivalence between Type I and Type III IDR models: interpretation

e Modeling extra correlation between continuous and ordered
categorical endpoints

e Application to ustekinumab data
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Ordered Categorical Endpoint Modeling:
Latent Variable Representation

e Example: 20%, 50%, and 70% improvement in the American College of Rheumatology
disease severity criteria (ACR20/50/70)

- Combine into one variable ACR: ACR20/50/70 achieved < ACR < k, k=1, 2, or 3

e Latent variable representing underlying disease condition (similar to Hutmacher et al 2008):
— Dis(t) = By Fp(t) Fya(t) exp(o &)
By, baseline; 0<F,(t)<1, placebo effect; 0<F4(t)<1, drug effect

e Define RfB(t) = % reduction from baseline, and calculate:
RfB(t) = [Dis(0) - Dis(t)]/Dis(0) = 1 - F,(t) F4(t) exp(-csig) exp(os;)
log[1 - RfB(t)] = log[F,(t)] + log[F4(t)] - osgig + ot

Define: z(t) = log[1 - RfB(t)], R(t) = log[F,(t)] + log[F4(t)] - cei, e=¢;¢
=

- z(t) = R(t) + ot
e Assumption: ACR20/50/70 met, if % reduction from baseline RfB(t) crosses certain thresholds

e Equivalently when z(t) = log[1 - RfB(t)] crosses certain thresholds
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Probit Regression

Let B, k = 1,2, or 3, be the thresholds, i.e. ACR < k < z(t) < B,

Using the probit link, i.e., assuming ¢ ~ N(0,1):
- prob(ACR = k) = prob(z(t) < By) = prob[e < (B - R(t))/c] = ®[(By - R(t))/c]

Write
- 1 = Bi/o, g(t) = -log[F,(t)]/o, f4(t) = -log[Fy(t)]1/c, n =-g

Then
- @1 [prob(ACR = K)] = v, + g(t) + f4(t) + 1

— which is the standard form of probit regression

— Constraint: 0 < g(t) < 1, but can be reparameterized such that -co < g(t) < 0

Using the logistic distribution for ¢ leads to a similar logistic regression
form, i.e., with @ replaced by the logit function
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Choosing Model Terms

Probit regression:
- @1 [prob(ACR < k)] = y + g(t) + f4(t) + n

Placebo model: Should have prob(ACR < k)] at t=0, thus g(0)=-=
- Choose g(t) = log[1 - exp(-rt)]

- g(t) = 0 = y, represent steady-state probabilities

Desired to use IDR model for fy(t); to interpret as drug effect, needs f,(t)=0
- f4(t) = DE[1 - R(t)]

d R(t)
= kin 1_ C—p - kout R(t)
dt ICs0 + Cp

- R(0) =1

f4(t) turns out to be equivalent to a reduction-from-baseline IDR model

- Proof: plug f4(t) into the differential equation
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Link Model Symmetry

e Probit regression model takes form of
- @1[prob(ACR < k)] = fi ,(t) + f4(t)
- f4(t) represents increase in beneficial effect

e Equally reasonable to model
- ®1[prob(ACR > k)] = gy ,(t) + gq4(t)
— gy(t) represents reduction in harm

o Algebraically, for general symmetric link functions:
= Gypt) = -fi (1), gu(t) = -f4(t)

o If f (t) takes form of reduction-from-baseline IDR model, then gy4(t)
takes form of corresponding increase-from-baseline IDR model

— Proof: plug g4(t) into the differential equation
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General IDR Model Symmetry

e As (perhaps) expectedly:
Type I/III reduction-from-baseline IDR model

=
Type III/I increase-from-baseline IDR model

— Proof: differential equation algebra

e (Perhaps) unexpectedly:
— No such symmetry holds for Type II/IV IDR models

e Holds regardless of categorical or continuous endpoint
modeling
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Applying IDR Model to Clinical Endpoints

e Clinical endpoint modeling
— Disease scores lack physiological interpretation

— Improvement can be caused by increasing benefit or reducing
harm

- May need to try all IDR models (Hutmacher et al 2008)
e Only 3 identifiable IDR models to try instead of 4

e Compared with simple correlation methods (e.g., using AUC),
IDR models, using only 1 more parameter (k,, ), allows the
efficient use of all exposure and efficacy observations
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Model Extra Correlation between Two
Endpoints

e Bivariate normal Residual errors of (latent) endpoints X, Z:

— (&x, €z) ~ N(py, zer Uz, Gzzr p)

- Conditional distribution:
*  Z|X=x~ N(uz + oz /ox p(X - ux), (1 - p?) c7?)

e May choose ¢, =1
e Implementation sketch in NONMEM:
- SIG = THETA(.)
p = THETA(.)

- IF(continuous observation) THEN
e RES = (DVctu - PREDctu)/SIG
e LKPASI = EXP(-RES**2/2) / (sqrt(2*3.14)*SIG)

- ELSE IF(categorical observation) THEN
e PREDcond = PREDdis+ p*RES
e INT1 = (ALPHA1 - PREDcond ) / sqrt(1 - p?)
e INT2 = (ALPHA2 - PREDcond ) / sqrt(1 - p?)

e IF(DV.EQ. k) THEN LKACR =
- ENDIF
~ Y = LKPASI * LKACR
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Application: Study Design and Data

Study PSUMMIT I (used for initial model development)

e TNF naive subjects with active psoriatic arthritis

e Week 0 - 12: PBO /45mg / 90mg / Loading + Q12 weeks

e Week 12 - 24: PBO crossover

e ~600 subjects, 2,000 PK records, 3,500 ACR scores, 2,300 PASI scores

Study PSUMMIT II (reserved for model validation)

e Similarly designed, except that ~50% subjects were TNF experienced
e ~300 subjects, half data records

Clinical endpoints

e ACR20/50/70: collected at Weeks 4, 8, 12, 16, 20 and 24
e PASI scores: treated as continuous, collected at Weeks 0, 12, 16 and 24
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Overall PK/PD Model Diagram for both
Endpoints (Type I IDR Model)
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Model Development

e PK modeling: Confirmatory (Hu & Zhou 2008, Hu et al 2011)

e ACR model component development:

- Reasonable, NONMEM standard errors for drug effect model
parameters relatively large (30-100%)

e PASI model component development:

— placebo effect was insignificant — model reduced to regular Type I
IDR model without placebo effect

- Between-subject random effect on baseline
— Reasonable, NONMEM standard errors for IC50 near 50%

e Extra correlation term estimated as 0.173, was significant with
NONMEM objective function drop = 13
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External Model Validation Visual Predictive
Check (VPC) - ACR
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External Model Validation VPC: PASI

90% P.l., mean — observed mean ° predicted mean 4
0 5 10 15 20
I I I | I I I | I I I I I I I
TNFQ 45mg TNFO 90mg TNFO PBO

Q

TNFO = Naive,
TNF1 = Experienced

PASI

TNF1 45mg TNF1 90mg TNF1 PBO

10 15 20

o
4
=
o
=
[$)]
)
o
o
(&1

time (weeks)

N—
, PHARMACEUTICAL COMPANIES



Conclusions

IDR models provide a predictive, parsimonious

approach for efficient exposure-response modeling
of clinical endpoints

e Change-from-baseline representation has nice characteristics
e Allows separate placebo modeling
e Practically, there are in essence only 3 IDR models instead of 4

Modeling extra-correlation between two endpoints

can be implemented in NONMEM
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